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INTRODUCTION AND BACKGROUND

Forced vibrations of undamped linear systems are characterized

by thp differential equation:

X + x f W= k/m (1)

where m and .k are the inerti and stiffness parameters of the system

and x represents the system displacement. Conventionally m and k are

constants and f is a time-variant force which causes resonance if it

contains a component having the system period 2T,/A7m'. The resonant

term is linear in the time variable t and is a particular solution

of (1).

If w is time dependent the solution of equation (1) is much more

complicated and in most cases has only been achieved through approximate

methods or numerical quadrature. An important subclass of problems

exists, however, for which a good deal of theoretical progress has been

made. These are problems in which the variation of u is periodic and

f is identically zero. Such case- are representpd by the homogeneous

linear differential equation:

R + ,12(t)x = 0 (2)

where w2 = L,2 (l - cp(t))
0

and @ is periodic in time. Since this equation is homogeneous it admits

a general solution of the form:

x = Axl(t) + Bx2(t) (2a)

where A and B depend only on the initial conditio.ns of the problem.

Floquet's theorem allows for two solutions of the form:

1Morse, P. M. drid Feshbach, H., Methods of Theoretical Physics, McGraw
Hill, 1953, 557.

1.
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I t

~x I (t) = q)ieYt

x2(t) 2e'  (3)

Historically, equation (?) is known as Hill's Equation and (3) are

its Floquet solutions. (See Appendix A.) The el(t) have the same

periodicity as the 'excitation' function t (t). Thus if y has a non-

zero real part, one of these solutions is unstable and the general

solution exhibits exponential growth provided that the initial

conditions are not those which would cause the corres )nding coefficient

of the growth term to vanish. Theoretically it has been shown2 that

unstable solutions car result whenever the ratio of a system natural

frequency to the frequency of excitation takes on values in the

neighborhoods of integral multiples of one-half (cf Fig. 1). Thus the

primary instability, for example, w~il be encountered when the

excitation frequency approaches twice a iatural frequency of the

system. We therefore have three fundamental differences between

conventional forced-resonance and that induced parametrically:

(a) Forced resonance is independent of the initial conditions

whereas parametric resonance is not. Given a force component

operating at a natural frequency of a system, resonance must occur

whereas a parameter :stiffness, mass) varying periodically at 2/n

times the system frequency (n an integer) need not produce resonance

2Bolotiti, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
1964, 22-23.



if the initial conditions can be controlled. This t especially siqrif-

icant when the short term response of a system is of interest for there

is a wide choice of initial conditions for which the early response will

have decreasing amplitude.

(b) Forced resonance consists of oscillations whose amplitude

increases linearly with time whereas parametric resonance produces

exponential growth.

(c) Forced resondnce occurs if and only if the forcing frequency

exactly equals a natural frequency of the system. In cot.trast parametric

resonance can occur whenever an integral multiple of the excitation

frequency approaches twice the value of a natural frequency. That is,

parametric resonance - unlike forced resonance - is not a singular J
phenomenon but occurs throughout the neighborhood regions of a countable

infinity of critical frequency ratios. It is therefore a regional

phenomenon. An infinity of unstable regions exist, the most important

of which is the primary region of instability.

Effect of Linear Damping

The addition of the linear damping term, 2c, into equation (2) ]
creates no complication since a transformation x = vw can always be

-fcdt
found (even when c is time dependenc) - such that w = e and v solves

the differential equation:

v - [c2 + C- W2(l - E(t))]v 0 0

which , if c = 0 , has the form of equation (2) and hence has solutions

(3). Thus elyt-fcdtj -[yt+fcdt]x = vw =A (t)e[t ct+ B 2(t e [ t I d ]

i.e., the inclusion of a linear damping term results in a simple

subtraction from y.

L3
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Two E amples of Hill's F uation

'ever,! e',amples of i 'l Pyqation arf. giver in the literature2 ' 3

rhe one most often cited pertdins to a beam column s, bjected to a

periodicdlly varying axi,,i .ompresslive load P(t) such ,s depicted in

Fiqure i. belnw:

NX

Figure a. - Classical Beam Problem Governed by Hill's Equation

The governinq differential equation from Fuler-Bernoulli hear,

theory is:

El -
4 u  + P(t) -- + 1. -- 0 (4)kX.X

As .,-aicinovic and Hermann have oointed out, an attempt to

separate variables throuph the sutstitution u(x,t) x(t)f(t) will

res-lt in the ordinary differential equation:

2Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
19E4, 22-23.
3Den Hartog, J. P., Mechanical Vibrations, McGraw Hill, 1940, 378.

OKrajcinovic, '. '. and ,friarn, G., Stabiity of Straight Bars
Sjb eted to Reoeated Impu sive -.ompression, AIAA Journa' Oct 68,

3 2 -0 7 7.

ti
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El _ + P(t) X" -?
pX p X f

Since the right hand side of this equation is independent of x:
iv

EIX =cunst =

and
X const =
PX

Thus f + c[l - BP(t)]f = 0 (5a)

and EIXIv -apX 0 (5b)

and EIXiv + X (5c)

While eouation (5a) is the desired Hill's equation for the system,

the separation of variables approach is only valid when X(x) also

satisfies equations (5b) and (5c); i.e., the modes of free vibration

which solve (5b), must be identical to the buckling modes %,hich solve i(5c). The case depicted in figure a. - a hinged-hinged support

system - does in fact satisfy both of these conditions. In most cases, i
however, the boundary conditions lead to modes which do not satisfy

both (5b) ind (5c). In such cases an approximate Hill's equation can

be obtained through a variacional procedure, such as that due to

Gdlerkin. In either case, therefore, the problem is reduced to the

analysis of -quation (5a) where a and s derive from an analysis which

is either exact or approximate.

Another example - one which more directly leads to Hill's

equation - considers a system with time-variant inertia, such as a

chili pumping a swing (figure b). Essentially a concentrated mass is

raised dnd lowered periodically along a relatively massless rod

j5



(or chain, etc.) which pivots at 0. The rotational inertia of the

pendulum thus varies periodically in time. The example is one where

the path taken by the mass through the gravitational field results in

a net amount of work per cycle of the motion.

The equation of motion:

d

1/ XI-P.(t~mg sine t (MZ2(t)6)

0t2 (6)

Q)Approximating: sin o3 a.,

9.(t) d8+ 2 .! + qe
t2 dt dt

Fi c re Swing Problem Leading to
Hill's EquationDefiingZ I+h~t, T Wtandw' gZ ladstu he nndiensonI

0 0

equivalent of equation (6):

(l+L(.~-+ h o ( 0 d/dr

If h(T) e 2.Ecos 2T and only first order terms in c are retained:

0 -4c sin 2TO + (1 - ~COS 2) 0 (7)

6J



Through the afore-mentioned transformation e = vw, the equation for

v and w are:

v + (1 + 3E cos 2T)V = 0 (Hill's Equation)

and
w e "E cos 2 T

J7

A grat amount of consideration has been given6 to cases where the

'characteristic exponent' y, is purely imaginary and the periodic

excitation t (t) is sinusoidal. Equation (2) then reads:

+ (a - 2q cos 2T)x = 0 (8)

This equation - a special case of Hill's equation - is called

Mathieu's Equation (canonical form). As with any Hill's equation,

Mathieu's equation yields periodic solutions (called Mathieu functions)

corresponding to purely imaginary, rational values of the characteristic

exponent y. With a view toward special armament applications, however,

this report will deal only with the unstable solutions of Hill's

equation, i.e., those cases in which y is real.

PARAMETRIC EXCITATION - ARMAMENT

There are at least two possible sources of parametric excitation

in gun tubes - that is, two ways in which periodic coefficients can be
rI

introduced into the beam equations of motion. The most obvious can be

called 'multiple round excitation' and derives from the periodicity

present in automatic weapons in which several time-variant forces

operate at the firing rate of the weapon. A reasonably comprehensive

6McLachlan, N. W., Theory and Application of Mathieu Functions,
Oxford Clarendon Press, 1947.

7
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differential equation including these forces was derived in a previous

w report7. Figure 2 shows a cantilevered beam model of a gun tube

Lacted upon by several curvature-indiced loads (constant projectile

velocity is assumed for simpli ity). in general one observes

several time dependent coefficients multiplying the various displace-

ment derivatives. In automatic weapons, these coefficients are

reproduced periodically according to the firing rate and will appear

in the Hill's equation obtained upon integration of the space variable.

In this report the effects of only one such term will be investigated -

namely, that corresponding to the periodic ballistic pressure applied

axially at the breech.
L3

A second and less obvious cause of parametric excitatier derives

from the coupling between axial and transverse tube vibratiois. The

simplest equation incorporating the necessary nonlinear coupling terms

was derived by Mclvor and Bernard
8 in 1973. Essentially the idea is

that a single impulsively applied load will set a coluirn ringing with

free axial vibrations. Nonlinear terms - oscillating at the frequency

of these vibrations, couple with the transverse displacement variables

through the stiffness coefficients. We can call this 'single round

excitation'. Thus kinetic energy from the axial vibrations can feed

transverse modes and lead to parametric resonance. The governing

7Simkins, T., Pflegl, G., Scanlon, R., Dynamic Response of the M113
Gun Tube to Travelling Ballistic Pressure and Data Smoothing as Applied

to XM150 Acceleration Data, WVT-TR-75015.

8Mclvor, J. K., and Bernard, J. E., The Dynamic Response of Columns
Under Short Duration Axial Loads, Trans ASME, September 1973, 688.

.8
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differential equations were solved by the authors through a Galerkin

procedure for the special case of a simply supported beam subjected to

an axial end load of short duration. (It should be noted, however,

that there is no guarantee that the variational quantity employed will

indeed admit an extremum when the associated differential operator is

nonlinear.] Since a good deal of energy is apt to be consi..ed in

rigid body recoil in armament applications, fixed supports are to be

avoided. Consequently a tube (beam) cantilevered from end supports

which allow axial movement (Figure 5) was chosen as the subjeJ,:t of

analysis for this report. (Relative motion of the supoort is ignored.)

Evidence of Parametric Resonance in Gun Tubes

In order to minimize shot dispersion in automatic weapons the

current design handbook9 dealing with gun tube design advises that I
the ratio of the fundamental transverse frequency of the tube to the

firing rate be kept greater than 3.5. The basis for this value is a

plot of shot dispersion vs. frequency ratio Rf appearing in the handbook

and reproduced as figure 3 of this report. Referring to this figure

three very prominent maxima are observed at successive integral values

of Rf = 1,2 and 3. The reference cited in connection with this plot

is a 1955 report by Wente, Shoenberger and Quinn oF Purdue University

Their results, shown in figute 4, are in marked contrast to those of

figure 3, however. Absent is the maximum at Rf = 3.0 shown in figure 3.

9AMCP 706-252, Engineering Design Handbook, Gun Series, Gun Tubes,
February 1964.

1OWente, B. E., Schoenberger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Freguency of Vibration of the Barrel
Upon the Dispersion of an Automatic Weapon, Purdue U., 1955, AD64132.

9
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It is also noted that figure 4 contains no information below the value

Rf = 1.0. Thus the only features common to both figures are apparently

the maxima at Rf 1.0 and Rf 2.0. Accepting these maxima as the

only credible information to be gleaned from the reference publications

one searches for an explanation as to their cause. While the maximum

at Rf = 1.0 may be attributed either to parametric or to ordinary

(forced) resonance, that at Rf = 2.0 cannot be due to ordfiiary

resonance and ma y be evidence of parametric resonance - which, as

previously discussed, can be expected to occur near nominal values of

Rf = 1/2, 1, 3/2,....n/2,.... Though parametric resonance should also

produce a dispersion maximum at Rf = 1.5 in Wente's plot, it may be

that it has been missed due to the paucity or data points.

Equdtions of Motion

The model chosen to represent armament applications is shown in

figure 5. The equations of motion which include c:lupling between

transverse and axial displacements are those of Mclvor ane Bernard

Eliminating their dissipation parameter for simplicity, these are,

U - [u' + l v,2]1 = 0 (9a)
2

2viV - (uv)' = 0 (9b)

Boundary Conditions
[-u + ( 2 -V)

P(T)/EA c Ea(OT) 0- + 1 av ,a

0 = as(,T) : + (.)]I, b

8Mclvor, J. K., and Bernard, J. E., The D namic Response of Columns
Under Short Duration Axial Loads, Trans ASME, September 1973, 6

10
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0- v(OT) C

0 = v"(1, ) d

0 = v' (0,T) e

t= v"' (0,T) f

where: u n/L= dimensionless axial displacement

v = dimensionless transverse displacement

s = x/L = dimensioniless coordinate

= I/AL2 = square of the reciprocal of the slenderness ratio

= at/L = dimensionless time variable

a = (EA/p)1/2 = extensional wave speed

E = Young's Modulus of Elasticity

A = Beam Cross sectional area

p = mass per unit length

I = area moment of inertia

P(T) = end loading, a ballistic pressure function of

duration T

Ca = axial strain including lowest ordered nonlinearity

Multiplying (9a) and (9b) by 6u and 6v -espectively and integrating

over the length of the beam:

(Ua - [u' + T v")'6u)ds = 0 (a)

f(V6v - [u'v']'6v + a2viv6v)ds = 0 (lOb)
0

11
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IIby ing boundary conditions a and b together with an integration

f{U6u + [u' +- v'2] u'}ds + ( u(O,T) =0ai2

Similarly, boundary conditions b through f applied to (lOb) yield:

(V6v + u'v'6v' + a2v"6v")ds + 1 (1,T (Jlb)

The last term in (1lb) is an order higher than those retained and

is therefore ignored. Except for the boundary terms, equations (11)

are identical to those obtained by Mclvor and Bernard for the case of

a simply supported beam under end loading. Our boundary conditions,

however, dictate a cnoice of completely different approximating

functions in the Galerkin approach to solution. Since both ends of

the beam in our problem are free to move axially, we must choose

functions which do not constrain the function u at the end points (0,1),

i.e., there are no geometric constraints such as are present )," the

problem solved by McIvor and Bernard. A set of functions which appear

to satisfy these requirements:

u = jqj(T) cos IJTs j = 0,1,2,... (12)
J

For the transverse motion, the eigenfunctions of a cantilevered beam

satisfy the conditions c thru f. Hence:

v = T_(t)Wm(s) ; m 1,2,3,... (13)
mm

12
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where
coshs) + COhlms (stnhBms.snlmSWin(s) = coshems - costs - sinh~" + stn ih, sn3,s

k sinha3m + sinam

and the am have values 1.875, 4.694, 7.855, etc.; further values can

be found in any standard vibrations textbook (cf ref 11).

Substitution of (12) and (13) into equatiots (11) and making use

of the orthogonality of the trial functions and the independence of the

variational quantities 6qj and 6Tm leads to the following sets of

nonlinearly coupled, ordinary differential equations:

j 0: = -P(T)/EA (14)

1,2,... + (=)=qj+ Amn Mn  -2P(T)/EA (15a)
mn

M 1,2,... Tm + a2 mTm +.I n AjmnqjTn = 0 (15b)

where the Aimn are defined from the integration:
I

f JTmWm 'TnWn'I JIqj stnjrsds 'i I A.

0 d - m n n~ q sijrss nA T mTn6qn j=1,22,... J,m,n

Table I gives the values of these coupling coefficients through

A666. Equation (14) is decoupled from the others and being repre-

sentative of rigid body motion is of no further interest. Equations

(15) can be solved numerically by any of several numerical integration

12programs once a has been specified along with the nondimensional

load function P(T)/EA.

1lNowackl, W., Dynamics of Elastic Systems, Chapman and Hall, 1963, 122.
12Ralston and Wilt, Mathematical Methods for Digital Computations,

Wiley, 1960, 95-10.

13
=

A



RESONANCE

During parametric resonance certain transverse coordinates Tm(')

become much larger than the rest. Thus the quadratic coupling terms can

be ignored except those expected to resonate. In single round resonance

it is expected that the response to P(T) will mainly occur in the ql( )

variable (i.e., the fundamental axial model and therefore only one

such term need be considered. If m = M represents the particular

transverse mode such that apM 2 = Tr/2, primary parametric resonance will

result. That is, the natural frequency c 2 is half the frequency of

the exciting variable q, = AsinTT, T > To, where To is the duration
of the load pulse P(T). I

For the study of single round parametric resonance therefore,

equations (15) reduce to:

ql + Tr2ql -2P(T)/EA -2P*(T) ; T TO  (16a)

TM + ( 2 1 + AlMMql(T))TM = 0 (16b)

In multiple round resonance, transient axial vibrations are

ignored and the qj(T) are assumed to follow periodic applications of

the load function quasi-statically. In this case, if the firing rate

is twice the Mth transverse frequency, parametric resonance will

result. Since all of the qj(T) are periodic according to the firing

rate, it is not icceptable to retain only the term in q, as in the case

of single round resonance. However, the amplitudes of these quasi-

static responses attenuate as 1/j2 (neglecting the quadratic term in

15a) and only a few need be retained for accuracy. In place of

14
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equations (15) we therefore have:

qj + (jn)2qj -2P(T)/EA -2P*(T) (17a)

(a + lAjqj(T))TM = 0 (17b)

where aW (weapon firing rate)/2
27t

The periodic character of the qj in either (16b) or (17b"

qualifies these as Hill's equations. As earlier indicated, the

general solution to Hills' equation can be written as:

TM(T) = a 1(T)e ' + b$2 (T)e-Y (18)

where the $. are periodic functions having the period of qj.

It should be mentioned in passing that when y is real, a plot of

the solution (18) will always show oscillations near the natural

frequency cxaM z even though the 01 have the same period as q, i.e.,

approximately half the naturel period -2T . That is, the periodicity

is not representative of the oscillatory appearance of the response.

It can be shown (see Appendix A) that once a solution for Hill's

equation is obtained over one period of the excitation, it can be

extended analytically for all time by means of Floquet's theorem.

Further, in the case of Mathieu's equation, analytical methods have

been developed leading to the direct determination of y, the character-

istic exponent. A detailed series of curves for this purpose were

developed by S. J. Zaroodny'3 in 1955.

13Zaroodny, S. J., An Elementary Review of the Mathieu-Hill Equation of
a Real Variable Based on Numerical Solutions, Ballistic Research
Laboratory Memo. Report 878, Aberdeen Proving Ground, MD, 1955.

15



EXAMPLE I - THE MCAAAC GUN TUBE

It is of interest to assess the likelihood of encountering single

round parametric resonance in the particularly long and slender tube

planned for the Medium Caliber Anti-Armor Atitomatic Cannon* currently

in the design stage. To this end equations (16) will be employed after

first establishing the magnitude of P*(T) and the mode M in which

resonance might be expected.

Equation (16b) always possess the (trivial) solution TM  0.

This solution only applies when the 'initial' conditions of displacement

and velocity following the application of the load P(T) are identically

zero in which case the response TM will be null no matter how intense

the 'excitation' qj(T). This is of little concern in armament

applications since a good deal of transverse motion is certain to be

excited by the firing of a "ound. For example the recoil of a slightly

curved gun tube or the motion of the projectile therein will always

excite some non-zero 'initial' motion. The axial vibration ql(T) in

recponse to the ballistic pressure pulse will generally result in

amplifica-ior of These initial mctions by its appearance in equation (16)

if thi parameter , happens to be 'tuned' for parametric resonance.

A,cording to results from the latest finite element (NASTRAN) model

of the MCAAAC tube (see Tabl(. I), the fundamentil axial frequency is

very ckrse te beinj twlze the frequency of the fifth transverse mode -

* The MCAAAC concept plans for a two or three round'burst' and is there-
fire not an automatic weapon in the same sense as a conventional machine
Ou0. Thus multi-round resonance is thought not to apply and the
investigation is confined to that of reL.)nance which might be induced
from the firinq of a single round.
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making primary parametric resonance of this mode a possibility if

enough axial excitation is produced from the application of ballistic

pressure to the breech. The parameters for a uniform beam model of

this tube were chosen, therefore, so that the fundaniental axial

frequency of 580 hz corresponds to ir in equation (16a) and exactly

half this value corresponds to cx52 of equation (16b). A summary of the

pertinent pdrameters implied by these assumptions appears in Table III.

The load function is approximated by a haversine shape. Thus (16a)

reads:
ql*wq, -P*(1 -COS- T < TO

The response following the termination of ballistic pressure is

sinusoidal with amplitude:

q,(max) = 2P* (. ) - 1

Assuming negligable response from the other axial modes, equation

(16) becomes (for suitable choice of 'initial' time zero):

5 + cx 5 (1 + E cos 7rT)T 5  0

where E = A155q1 (max)/Cl
2854

Using values from Tables I and III, c is evaluated at 2.07 x 10-2.

The solution for T5 is given by expression (18). In view of the small-

ness of c and the precise state of tuning assumed, a very good

approximation for y can be obtained by the method of strained para-

14meters14. The result is:

14Nayfeh, A. H., Perturbation Methods, John Wiley, 1973, 63.
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II

In real time the magnitude of this exponent (;ee Table III) becomes:

71 F x 1160 9.44
8

In generil the coefficient of the growth term in (18) depends on

both the initial displacement and velocity of the Mth transverse mode

at 'time zero'. It is this quantity which is amplified, the remaining

term of (18) becoming less important as time moves on. As a specific

example it is notable that for certain initial conditions (see

Appendix A), the general solution (18) degenerates to:

TM(T) = C l (T)eY ; y > 0

In this case any transverse initial displacement Ts(0) is

amplified according to the multiplier eYT. The real time computed

value of 9.44 implies an amplification factor of nearly three orders

of magnitude only 3/4 seconds after excitation. In practice, however,

this build-up is unlikely owing to the attenuating effect of damping

and the improbable state of tuning and initial conditions necessary

for maximum y.

The probability of experiencing single round parametric resonance

can be significantly increased if the duration of the ballistic cycle

becomes briefer than that assumed. Actually, it is the ratio of the

period of the ballistic pilse - whatever its shape - to the funda-

mental axial period which is of importance. Figure 615 shows the

15Harris, C. M., and Crede, C. E., Shock and Vibration Handbook,
Vol. I - Basic Theory and Measurements, McGraw-Hill, 1961, 8-24.
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I
enormous influence of tnis ratio on the value of y. For example, a

haversine pulse cf ratio 0.8 will solicit an axial response rql(ma.4

which is about twenty-five times greater than the previous case

(wheee the ratio was approximately 3.5). Since y oirectly depends on

ql -:,x), an amplification of three orders of magnitude is realized in

less than seventeen cycles of axial vibration (about 30 milliseconds).

In view of this potential for large y it is therefore important that

the design of a weapon be such that axial vibration magnitudes be kept

small - principally by creating intentional mismatch between the

fundamental axial period and the period of the ballistic cycle.

Referring again to figure 6, a haversine ballistic period should be at

least twice the fundamental axial period. For ballistic pulse shapes

which deviate considerably from a haversine, a response spectrum

similar to that of figure 6 can be easily derived via computer. -

Before moving on to a specific example in multiple round resonance.

L some consideration should be given to the manner in which the excitati'in

differs from that considered in the single round situation. As

previously stated it is not the free axial vibrations but rather the

quasi-static responses of the axial modes which serve as excitation

of transverse vibrations. For example if P*(T) is a single haversine

pulse of duration To:

i.e. P*(T) - P*/2(l - cos 2T/To)

then the solution to (17a) is:

A. 19
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L 22 C) .(2)

if ro >> 2/j, the natural period, then

qj I -2P*('(jn)2  (20)

that is, the response is quasi-static. In all weapons of short tube

length - typically automatic small arms - the ballistic period is much

longer than the fundamental natural period of axial vibration and the

assumption, To >> 2/j is justified. Thus the oscillatory terms in

the solution (19) can be neglected with little sacrifice to accuracy.

On the other hand while To may be long compared to the fundamental

axial period, it is very short when compared to the periods of the

first few transverse modes. It is tempting, therefore, to consider

replacing the q.(T) - as they appear in (17b) - by impulsive type terms.

It will be shown that such a replacement sacrifices little in the way

of accuracy and leads to a very convenient consolidation of results.

Multiple Round Parametric Resonance - Impulse Excitation

In 1968, D. P. Krajcinovic and G. Herrmann published work5 dealing

with the parametric resonance of bars subjected to repeated impulsive

compression. The equation studied by the authors can be obtained by

substituting the quasi-static solutions of (17a) into (17b):

T[l + ) P*(T)]T 0 (21)M + M - M

5Krajcinovic, P. P. and Herrmann. G., Stability of Straight Bars
Subjected to Repeated Impulsive Compression, AIAA Journal, Oct. 68,

20
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where
2 = and vM = j2AjMM/(JnpM )2

The load function considered by Krajcinovic and Herrmann:

k~c
pP*() * + p SOT - kej (22)

where T is the period of P*(T). Physically, (22) represents an

infinite series of impulsively applied compressive loads superposed

upon a steady load of magnitude PI*" 6(z) represents the Dirac

function and e is a parameter having the dimensions of frequency. In

practice the authors did not have to deal with the full load expression

(22) hut only one cycle thereof, for example - a single impulse applied

at T = i. This is possible because Floquet theory (see Appendix A)

enables the solution over one period of the excita'ion to be extended I
£ indefinitely in time. Furthermore, questions of stability can be

answered by considering whether the motion grows or decays as a result 4

of a single load application. Thus the load function actually used

for itnalysis was equivalent to:

P*(T) = Po*S[e( - i)] (23)

that is, a single impulsively applied load at -r = T

Defining VMPo* = VM, equation (21) becomes:

T + Q2[l - U6(0(T - i))]T = 0 (24)

(The subscript M is implied throughout.)

iKi
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Stability Analysis

Floquet's theorehw16 guarantees the existence of particular

solutions T(T), to equation (24) such that

T(T + T) = pT(T) (25)

where T is the period of the applied load. We are interested in

determining the conditions under which p may be real and have an

absolute value greater than unity indicating a growth of the response

amplitude after one period of the excitation. Bolotin has shown

that if two linearly independent solutions TI(T) and T2 (T) are

chosen which sdtisfy the so-called 'unitary conditions':

E T (0) 1 Tl(O) 0

(26)
T = 0T = 1T2O2

then the equation for p becomes simply:

p 2Ap+ 1= 0

where
A=- [TI(T +) 

+ T2( +)]

The condition that a value of p exists with IpI > 1, therefore amounts

to:

JAI > 1 (27)

It is also apparent that the two roots of the quadratic equation are

reciprocal - i.e., plP2  1.

16Meirovitch, L., Mlethods of Analytical Dynamics, McGraw-Hill, 1970,264.
17Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
1964, 14.
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Now two linearly independent solutions to equation (24) which

satisfy the unitary initial condit4ons (26) are:

TI(T) = cos

T2 = -sin r (28)

... T < T

In order to use the inequality (27), the values of Tl(i +) and

(T+ ) are required. While the functions themselves are continuous

at T = T , their derivatives are not - owing to the application of the

impulse at this instant. Thus the derivative, T2(T) cannot be

obtained by simply substituting into the derivative expression for T2.
The stcp change in the derivative, however, can be computed by a

direct integration of equation (24) over a short time interval

containing the point T = T.

i.e. ] + -+C-€ /  a2[d~e( - )-I)]T(T)dT
E T-C

Since T(T) is continuous at T, the term £2T contributes nothing

to the integral as E is made vanishingly small. Thus

I t-€ S (0 ( 0) (29)

The right hand side of (29) derives from the relation:

a, f_ S (z)o( ) z a, _ _
f 6(az)o(z)dz = lzl-f a l -

where 0(z) is a test function. Since 0 is arbitrary it can always be
Vi

chosen as positive and the absolute signs omitted accordingly.

23
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Thus, from (29):

2( + ) T 2 T T2() Te T(-) =) + cos

hece AI 2cos QT- sin QT

Thus the instability condition (27) becomes:

IAI =12 sin Q + cos !:-e I (30)

In the work performed by Krajcinovic and Herrmann, ( is defined

as being inversely proportional to T (0 = ) which is the customary
T

definition when treating cntinuous excitation functions. Adhering

to this definition in the case of repetitive, discontinuous loads,

however, leads to a load function which is physically irprobable.

For the load function (23):

i.e. P*(T) = P *6[(T -T0

the impulse of this load under the above definition of 0 becomes:
Po Po*-T

P* f 6[e(T- T)]dT - 2-0 (31)

that is, the impulse strength is seen to depend on T , the period of

time between impulses. This is not the physical situation of interest A

in armament - and many other - lications which imply a sequence of

equally strong impulses independent of their spacing in time.

Fortunately, these cases can be handled merely by redefining 0, i.e.,

let e=- , where TO represents the duration of the ballistic load

function as shown in figure c.

24
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Figure c. - Periodic Ballistic Pressure Function I
Under this definition of e, the impulse (31) becomes:

Po*0 - * Io
0 0 0

I0 is defined as an impulse conveyed by a load of average value Po*

and duration To . In practice P*(T) in equation (21) is to be

replaced by the load function Po*S[E(T-T)] which has the same impulse

as P*(T). Thus PO* must represent the nondimensional time average

axial load on the breech due to ballistic pressure.

The result of redefining e on the instability condition (30) is

considerable. Whereas the expression for A in (30) is purely a

function of p and the ratio of the natural frequency to that of the

excitation, this is not the case when the meaning of 8 is changed.

Substituting 8 = 1/To into (30) the condition for instability becomes-

25
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I

A -- s i n i + cos j > 1 (32)
2

Thus for the Mth equation (17b) we have p =M and Q 2M as previously

defined so that (32) becomes finally,

AjMM 10 sin Qf + Cos MT I -I#, I  I [Oj M)2 1

CMsin 2rr+ cos 2rr- I (33)We we

where definitions for CM and we are inferred. we now represents the

frequency of the impulse excitation instead of 0. AM is seen to

depend on O/ct - the product of the impulse and the slenderness ratio-

and the ratio of the unperturbed natural frequency to that of the

excitation. It is also apparent that in contrast to (30), AM is now

periodic in the frequency ratio implying equal stability criteria for i
all 'zones' of instability 1/2, 1, 3/2, ... , n/2,

(0" e

The Characteristic Exponent - Maximum Value

The general solution to Hill's equation (17b) is given by (18).

This solution, having property (25), implies the following definition

for y, the characteristic, or 'growth', exponent:

y n: - y real
T

For a given excitation frequency we, i is a specified quantity and

maximum values of IpI determine maximum y. In calculating the partic-

ular frPquency ratio for which IpI will be maximum, we first let

1/we : n/2 + 6S

26
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n designates the zone of instability while 6 a local coordinate to be

varied in searching for a maximum value of IPI Substituting in (33):

CMIoAm  C sin 2Tr6 + cos 2T6](-I) n

aAM _ _)n [-- 0 = )n [CMlo/a cos 2r6 - sin 2w6]

so that I tan 1I CMI- 1 a value of 6 for which AM is extreme.

27r O 6

From (26b):

p = AM 'AM -
M

For extreme values of p:

aAM -1/2
(1 AM(AM 2 - l)0

Thus when 6 = 61 , p will also be extreme. Substituting:

ext cos 2trl - cs 1  -CO 21T61

hence 1 ± sin 2w6i (34)
1P'ma Cos 21T6 l

where the sign is chosen to agree with that of 61. Note that IpImax

is confirmed in (34) to be completely independent of the zone number
CM1o

n. For practical ranges of ,61 is small and can be considered
a

a linear function of this parameter.

i.e. 2r6 1 - CM Io/a

and (34) gives: 'Plmax I + iCN

or - nlPlmx = MIo/a , to a high degree of accuracy. (35)

Iax
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I

Figure 7 is a contour plot applicable to all instability zones.

The contours are curves Inipi = constant. The plot shows that the

instability becomes broader in band and that for larger values of the

parameter R = CMIo/. the values of InlpI become less sensitive to

variations in 6, i.e., the contour slopes dR become flatter.

It still remains to determine the conditions under which a

repetitive load function can be justifiably replaced in Hill's

equation by a repetitive series of impulses. It is expected that these

. conditions will not strongly depend on the particular shape of the

function involved but rather its duration, T and the frequency, Q

of the system on which it acts. For the sake of argument, therefore,

a sequence of rectangular pulses (-(T) is chosen as excitation to Hill's

equation:

f + Q2 (1 - o(t))f 0

where

t(T) = 1, 0 < T < T

0, TO < T < T

and O + T - (T)

The corresponding expression for A in this case turns out to be
18 "

A (sin QT COS P lTo - 2Pl COS OT sin plTo)sin PT +

0 2pl 0
+ (COSPIT CO QT +sin PlTo sin PT )COS EF

19641, 18.
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It is easily verified that for small values of the quantity no,

the expression for A above reduces to that in (32). Expanding the

transcendental terms containing the parameter ITO , and retaining up

to third order terms in this parameter, (36) becomes:

A = £ OTo/2 (l+O2pto/6) sinOT + cosoi
CMlo C~ I O

- (1 + ) sin T + cos 0

It is therefore concluded that if

QT 3 (37)

the approximation (33) will be good.

EXAMPLE II - M139 AUTOMATIC WEAPON

The 20mm M139 at first glance (Fiqure 8) would appear to be

vulnerable to transverse vibration excitation. It has the appearance

of a long and slender tube - as compared with, say, a typical .30

caliber gun such as illustrated in reference (9). Actually the

slenderness ratio of the two are nearly equal having values of

approximately 103 and 92 respectively. In spite of this our intuition

is not in error. As previously demonstrated, it is not the slenderness

ratio alone, but its product with the non-dimensional ballistic impulse

which determines the strength of the exponential growth in parametric

resonance. As it turns out, this impulse (I) for the 20mm round is

nearly three times larger than that computed for the .30 cal weapon.

A complete set of calculations follow - leading to the evaluation

of the parameters CM and I. /a. The possible values of the growth

29
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exponent y are then determinable from fiqure 7 .

A uniform tube approximation is assumed:

Do =1.5 in - tube outer diameter

Di = 0.79 in - tube inner diameter

L = 72 in - overall tube length

PAV = 40,000 psi - time-average ballistic pressure

to = .0015 sec - effective duration time of ballistic pressure

function
5I

a = 2.02xl05 in/sec - extensional wave speed

E = 30xlO 6 psi - Young's Modulus of Elasticity

If the ratio of the unperturbed natural frequency QM to the

excitation frequency we is nearly an integral multiple of 1/2,

parametric resonance is possible.
i.e., "M _ aM,

4' n/2 n 1,2,3...

We:2T

or T = nT

is the time between rounds. In real time, t TrL/a, corresponding

to a firing rate of 915 rounds per minute - a reasonable value in

practice. From the previously assigned values:

1 = LvA-UT = 103.3
L- the slenderness ratio

If we choose M = 1, that is, parametric resonance of the fundamental

transverse mode of vibration, then for n = 2,

= 27r 184 and t & .066 sec

30
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where we have used the value l= 1.875 - corresponding to the

fundamental mode of a cantilevered beam.

The nondimenslonal axial load (average)*:

TPAVDI 2
PO 5.12x10 40o 4 EA

The duration of this load in nondimensional time:

= o to = 4.21

Thus the nondimensional impulse is:

I0 - Po*T0 = 21.58x10
4

Recalling the definition of CM:

CM 4

For M= 1, therefore:

A41
AC 1 234

C1 - [J(l.875 )]2

The parameter t0 must satisfy the smallness criterion (38); i.e.,

3c&l'ro << CI--
fo C110

Substituting values for the parameters:

.0956 << 57.5
which would appear to be satisfactory.

*Note that the real quantity of interest is the nondimensional impulse,
1o . If ballistic curves are available this quantity can be determined
d rectly by a simple integration.
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Expressiun (36), or equivalently figure 7 shows that the

greatert value for ln1Pm is .052. The corresponding growth

coefficient:

Inllmax .052
Y' = - .786max t .066 "

This value of y can produce a vibration amplification of over 50

in 5 seconds of repeated firing. In other words if at any time during

firing the deflection of, say, the muzzle is a given amount then 5 sec

later this delle,;tior can be over 50 times greater.

It is not likely that the exact state of tuning will exist such

that the maximum amplification will be realized. Furthermore, as

previously shown, damping will reduce the amplification. On the other-

nand there are other loads which have not been considered and which may

be non-mitigating. Reactions from the moving projectile and the

travelling propellant pressure as well as the relative movements of

supports are synchronous with the load considered in this report and may

add to its effect - possibly more than offsetting the reduction caused

by damping. Again it is mentioned in connection with figure 7 that

the state of tuning leading to large amplifications need not be as

precise when larger values of the abcissa are encountered.

The models assumed in this report are of course, somewhat

idealized. It is always a question as to when more detail should be

4-cluded. How much is gained, for examole, by including the geometry

of a variable cross sectional area when knowledge of the support

32
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conditions is always so imprecise? Further, it is almost certain

that the general character of the results shown in figure 7 will

prevail regardless of the detail incorporated in the modeling effort.

That is, no matter how detailed the model, parametric resonance will

probably be confined to a narrow band of frequencies for the tensile

loads likely to be induced on the tube through firing. The frequency

is going to have to be 'just right' for it to occur. But given the

proper frequency ratio our preceding analysis definitely suggests

that ballistic forces are sufficient to create significant exponential

growth. It is doubtful if any higher degree of confidence in these

general findings could be obtained through the use of more refined

models. On the other hand, the frequencies and even the particular

mode which may resonate cannot be predicted with confidence unless an

extremely detailed model is employed. Even then, in cases where

parametric resonance is suspect, field measurements should be made to

determine precisely the frequencies of free vibration and excitation.

As mentioned earlier in this report, there exists certain inconclusive

9,10
evidence that dispersion maxima observed in tests with certain

automatic weapons may be caused by parametric resonance. On the basis

of the feasibility demonstrated herein, it is advisable that such

experiments be repeated in a more tightly controlled manner so that

a conclusion may finally be drawn.

9AMCP 706-252, Engineering Design Handbook, Gun Series, Gun Tubes,
February 1964.

lOWente, D. E., Schoenlerger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Frequency of Vibration of the Barrel
on the Dispersions of an Automatic Weapon, Purdue U., 1955, AD 64132.
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TABLE I*- COUPLING COEFFICIENTS A
jmn

A,,= -9.83 AI 1121

A 11.1 A1 22 = -50.1
11212

A113 = 7.71 A123 = 16.4

A1 l 4 = 1.91 A124 = 30.3

A1 5 = 1.68 A125 = 6.93

A116 = .819 A126  7.54

A31 = 7.71 A41 = 1.91

A132 = 16.4 A142 = 30.3

A = -128. A = 18.4
133 143

A = 18.4 A144 = -247.
13414

A 69.6 A = 18.9
135 145

A136 = 11.3 A146 = 122

A15 = 1.68 A .81915 161

152A 6.93 A162 = 7.54

A153  69.6 A 63  11.3

A154  19.0 A164 = 122.

A 404. A16  19.3
15516

A 19.3 A 601.
156 166

*Certain symmetries are evident throughout the Table. No attempt has

Lbeen made to make use of symmetry properties in order to shorten the
tdbulation.
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TABLE I- COUPLING COEFFICIENTS A (cont.)

A =9.78 A22  -48.6
21121

212 222

A 213 =26.3 A 223 = 115.

21A 25.4 A22  45.7

A 25= 3.35 A 225 =92.8

A 26= 5.94 A 22 18.4

A =26.3 A =25.4I
231 241
A232 =-115. A242 =4.

'233 = 243 =-27

A23  =247. 24A 89.5

A 235 = 61.6 A 245  -433.

A = 201. A2 6  68.9
23624

25A 3.35 26A 5.94

A25  92.8 A26  18.4

A25  61.6 A26  201.

A254 =-433. A26  68.8

25A 85.9 A =-670.
255 265

A256 =-670. A266  8.
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TABLE I COUPLING COEFFICIENTS A (cont.)

A 6.53 A = 33.8

316 326

A31 33.8 A32 =174.

A = -112. A321  164.

A332 = 45.5 A3 2 = -216.

A31 53.4 A32 73.1

A31 2.50 A32 183.

A 331 =-112. A341 = 45.5

A 332 =164. A 342 =-216.

A333 : -156. A343 : 196.

A334 : 196. A344 = -279.

A335 = -434. A : 197.
335 345

A , 111. A346 = -722. II
33634

A351 = 53.4 A361 = ?.50

A352 = 73.1 A362 = 183.

A -434. A363 = ill.

A354 = 197. A364 = -722.

A355 = -440. A = 194.
355 365

A356 = 194. A36S = -639.
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TABLE I -COUPLING COEFFICIENTS A (cont.)

A 411 =8.19 A421 =-23.1

A41  =23.1 A42  108.

A41  62.5 A42  =351.

A = 201. A =266.

414 424

A41  68.8 A42  =349.

* A4 6 =91.8 A42  98.3

A 431 =62.5 A 441 = 201.

A432 =-351. A442 =266.

A43  273. A44  =237.

A43  =237. A366.

A45 =303. A394.

A = 674. -316.

43646

A451 =6.A 461 =91.8 AI
452 -49. 462 =98.3

A45  = 303. 46 = 674.

A45  -394 . A46  316.

A45  381. 4A =588.

4 -588 A465 35

37 37
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TABLE I - COUPLING COEFFICIENTS A (cont.)

A5 11 = -7.19 A521 : 28.9

A51 2 = 28.9 A522 : -80.1

A51 3 : -38.5 A5 23 = 183.

A5 1 4 : 98.5 A5 24 : -586.

A51 5 = -316. A5 25 : 390.

A5 1 6 : 96.6 A52 6 = -512.

A5 3 1 = -38.5 A5 4 1 = 98.5

A53 2 = 183. A5 42 : -586.

A5 3 3 = -66.9 A54 3 = 401.

A534 : 401. A54 4 : -324.

A535 = -339. A545 : 535.

A5 36 : 420. A546 = -542.

A551 = -316. A56 1 = 96.6

552  390. A = -512.
562

A553 = -339. A56 3 = 420.A553 A563

A 535. A -542.

A5 55  -494. A565  575.

A556  575. A = -698.

IjI

38 56
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I' TABLE 1 COUPLING COEFFICIENTS A (cont.)

611 .5A -24.7
621

A612 = -24.7 A 622 = 101.

A =49.3 A -130.613 623
61 = 56.3 A62  270.

A =142. A%6s-878.61562

A 616 =-456. A62  539.

A 631  4 49. 3 A64  = 56.3

A63  -130. A64  271.

A6342 108 644 = 56

A =52.A -42635 645 08

A 636  -107. A 716.

A65  552. A66  = 432.

6365  =432. A 646= 716.

A65  5 52.A =-62

A656 =-632. A66  836.
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TABLE II- EIGENVALUE ANALYSIS (NASTRAN) - MCAAAC, 60MM

(Trussed Configuration)

Mode Type Frequency (hz)

Recoil mode 1.81

Fundamental Transverse mode 79.5

2nd Transverse mode 100.5

3rd Transverse mode 125.6

4th Transverse mode 218.7

5th Transverse mode 296.2
6th Transverse mode 412.7

7th Transverse mode 525.9

Fundamental Axial mode 580.1

2nd Axial mode 1189.2

3rd Axial mode 1898.4

4th Axial mode 2496.2

4

40i

A$

S. -~ ~- . -. - . - -



TABLE III - PARAMETRIC VALUES, MCAAAC TUBE

The parametric values listed below are based on the material constants

E~pfor steel, a peak ballistic pressure of 75,500 psi, and the NASTRAN-

predicted frequencies for the fundamental axial vibration and the fifth

transverse vibration modes.

2 = 6.44x10 5

/t = 1160

EA 0 (-Cos-)
2

.4P = 7.03x10

To = 6.96

r

..
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Figure 1 .stability Zones. Excitation in Hill's Equation is a

KRectangular Ripple Function. (cf ref (2), p. 18, fig. 4).
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Substituting into A2: +

Af (t+T) + Bf (t+T) p[Af (t) +Bf (t)]
2

Using A3:
2

{Aa1.f.(t) + Ba2 t} p[Af (t) + B ()
j=1

Since fand f2 are independent:

* Aa1  + B".. Ap

a12 +B 22 = Bp (5

A5 only has nontrivial solutions if the determinant of the

coefficients of A and B vanish:

i~e, 11 - 21  =0 (A6)

a12 a2 P

7Substituting into either of the equations A5, each root p.1

gives a ratio B/A such that the solution will satisfy the conditionU

(~) = ''(A7)

a21

In particular, if f1(t and f (t) are chosen to satisfy the so

called 'unitary initial conditions':

f1(0) I f (0) 0

i"' 4f- () 0 fq1(0) 1

then, from A2:

A =Y(O)

B =Y'(0)

51
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and hence the ratio B/A is the ratio of initial conditions such that

A4 is satisfied. Further, from A3, definitions are given to the aij:

al f 1 (T)

hence

21 = f2(T)

a12 = fl' (T)

a22 = f2' (T)

Pi fl (T)

and [Y'(0)/VrI L f(A8)
' f2(T)

The quadratic equation for p (A6) becomes:

p2 - 2Ap + B = 0

where**
A = [fl(T) + f2'(T)]

B = fl(T)f2 (T) - f 2 (T)fl'(T) 
(A9)

~f2

Multiplying the first of these equations by f2 and the second by

f and subtracting:
f f 0(19)

f1f2 '  f f2f"=O

Integrating:

B = fl(t)f2'(t) - fi(t)fl'(t) = const

The constant has unit value in view of the unitary initial conditions

employed.

19Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations
and Boundary Value Problems, John Wiley, 1966, 89.

*Note that this equation can be written W' = 0, where Wl  is the
Wronskian of fl(t) and f2(t). -12 ' 1

**If any of the fi have jump discontinuities at t = T, then A A(T+ )
is implied.
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Thus equation A6 becomes:

p2 _ 2Ap + 1 0 (AlO)

whereupon
p = A ±A.

Note that the two roots of this equation are reciprocal, i.e. plP 2 = 1

Thus corresponding to real roots, A4 represents a solution which

grows or diminishes (according to the choice of p) following each

period of the excitation, T. The ratio of initial conditions which

will lead to either of these solutions alone is given by A8.

EXAMPLE - Delta Function Excitation

Let C0
i., ¢(t) =k-- 6(t-kT N

k=l

Frcm AlO, the roots p. depend entirely on the quantity

A = [fl(T) + f6 (T))

where fl(t) and f2 (t) are linearly independent solutions of Hill's

Equation (Al) satisfying unitary initial conditions. These can be

chosen as:

fM(t) = cos Lt

f2(t) = sin Qt (mll

Thus fl(T) = cos &2T

The expression obtained by a formal differentiation of f2(t)

above, is valid up to but not including time t = T since the

application of the first 'impulse' will cause f2' (T) to be discontinuous.

This jump discontinuity can be evaluated by an integration of Hill's

Equation (Al):
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T+At
f2 (T) f (T) lim fQ2[Ee6(t-T)-l]f 2(t)dt = e62f2(T)

At-*O T-At

Thus f2' (T) = cSsinQT + cosST

and
A = sinOT + cosQT2

whereupon the roots p, p2 may be evaluated.

For any given finite value of e, intervals of the parameter OT

exist such that these roots will be real and since their product must

be unity, the following possibilities arise:

(I) P1 = P2 =±l1

(i)Pl > IP2 < 1

Case (i) represent borderline situations, that is, the solutions A4

neither grow or decay with each period T of the excitation. Case (ii),

on the other hand, produces one solution of tha form A4 which grows in

amplitude by a factor p, > 1 and another which decays by the factor

P2 < 1, each period of the excitation. The initial conditions which

produce either of these solutions must only satisfy A8,

FIi.e. =Pifl ( T )

ieO) = f(T) = [ p cosoT] 2/sinsT

Y(O) f (T)

Figure Al(a,b) shows the solution when this ratio is enforced. In

general, however, the solution for arbitrary initial conditions is a

linear combination of these special solutions of pure growth and decay.

Figure Al(c) shows one such solution exhibiting early decay even-

tually to be overpowered by the growing solution.

V4
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The solutions of pure growth or pure decay can be represented as:.1

t In P.

where

so that indeed, t.tT(+ 1)ln
(t+T) = jf(t)e

as required. In general p is complex

hence
In pj lnjp.I + i arg(p.)

Thus t ln!pjI

whr it arg p.(A13)

When the pj are real, Oj(t) YO~~t and are periodic in T. Thus

the general solution to Hill's equation may be written

Y~t)= Alnlpl I lnjp 2
Cp(~ T +C tT P2

or, enforcing the relation Plp 2 = 1:

= inipl I lnIplI
Y(t) ' ~

O''-i-, + C 24 2 t

17Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holdeti-Day,
1964, 14.
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FIGURE Al SOLUTIONS TO HILL'S EQUATION - IMPULSE EXCITATION OF
STRENGTH 0.1 APPLIED TO A SYSTEM OF UNIT CIRCULAR
FREQUENCY. INITIAL CONDITIONS INDICATED IN THE
FOLLOWING CAPTIONS (Al(a), Al(b), Al(c) ) ARE PREDI-
CATED ON AN ASSUMED INITIAL ENERGY PER UNIT MASS OF 1/2.

A

I56

I!

ii
11

56



II

a G

CD

57W



>, J -

a 14

*0

NPJ

oz r 09 0110 Do0 ow- Ped- a
IN 3WOU I JS I

58o



14

0 r

4) 0

4A

to

aa
-==Map

0 40-09 MO 00 0 0% .N

IA-



r

ii

REFERENCES

1. Morse, P. M. and Feshbach, H., Methods of Theoretical Physics,

McGraw Hill, 1953, 557.

2. Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-

Day, 1964, 22-23.

3. Den Hartog, J. P., Mechanical Vibrations, McGraw Hill, 1940, 378.

4. Tong, K., Theory of Mechanical Vibrations, J. Wiley and Sons, 1960.

5. Krajcinovic, D. P. and Herrmann, G., Stability of Straight Bars

Subjected to Repeated Impulsive Compression, AIAA Journal, Oct 68,

2025-2027.

6. McLachlan, N. W., Theory and Application of Mathieu Functions,

; Oxford Clarendon Press, 1946.
[II

7. Simkins, T., Pflegl, G., Scanlon, R., Dynamic Response of the M113 j

F: Gun Tube to Travelling Ballistic Pressure and Data Smoothing as

Applied to XM15O Acceleration Data, WVT-TR-75015.

8. McIvor, J. K., and Bernard, 3. E., The Dynamic Response of Columns

Under c"ort Duration Axial Loads, Trans ASME, Sept 1973, 688.

9. AMCP 706-252, Engi,eering Design Handbook, Gun Series, Gun Tubes,

Feb 1964.

10. Wente, D. E., Schoenberger, R. L., and Quinn, B. E., An Investigation

of the Effect of the Natural Frequency of Vibration of the Barrel

Upon the Dispersion of an Automatic Weapon, Purdue U., 1955, AD 64132.

4o' 60

.. ... ..... ~~~~ ~ ~~~~~~.. ............ .,,. ... ,. :, ,. " ,"



11. Nowacki, W., Dynamics of Elastic Systems, Chapman and Hall, 1963,

122.

*"12. Ralston and Wilt, Mathematical Methods for Digital Computation,

* Wiley, 1960, 95-109.

* 13. Jaroodny, S. J., An Elementary Review of the Mathieu-Hill Equation

of a Real Variable Based on Numerical Solutions, Ballistic Research

Laboratory Memo., Report 878, Aberdeen Proving Ground, MD, 1955.

14. Nayfeh, A. H., Perturbation Methods, John Wiley, 1973, 63.

15. Harris, C. M., and Crede, C. E., Shock and Vibration Handbook,

Vol I - Basic Theory and Measurements , McGraw Hill, 1961, 8-24.

16. Meirovitch, L., Methods of Analytical Dynamics, McGraw Hill, 1970,

264.

17. Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-

Day, 1964, 14.

18. Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-

Day, 1964, 18.

19. Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations

and Boundary Value Problems, John Wiley, 1966, 89.

iii
'-1

61

..



WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST

May 1976

No. of Copies

COMMANDER

DIRECTOR, BENET WEAPONS LABORATORY

DIRECTOR, DEVELOPMENT ENGINEERING DIRECTORATE 1
ATTN: RD-AT 1

RD-MR 1
RD-PE 1
RD-RM 1
RD-SE 1
RD-SP 1

DIRECTOR, ENGINEERING SUPPORT DIRECTORATE

DIRECTOR, RESEARCH DIRECTORATE 2
ATTN: RR-AM 1

RR-C 1
RR-ME 1
RR-PS 1

TECHNICAL LIBRARY 5

TECHNICAL PUBLICATIONS 4 EDITING BRANCH 2

DIRECTOR, OPERATIONS DIRECTORATE 1

DIRECTOR, PROCUREMENT DIRECTORATE 1

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1

PATENT ADVISORS 1

V . . ,. :..:, i,. ..~ ." i] , -i,-. .. . , ,., .'",,, ,.,i...., , . ':... . '. .. '



FF

EXTERNAL DISTRIBUTION LIST Deemei17
December 1976 "

1 copy to each

OFC OF TIIE DIR. OF DEFENSE R&E CDR
ATTN: ASST DIRICTOR MATERIALS US ARMY ARMr COMD
THE PENTAGON ATTN: AMSAR-PPW-IR

WASHINGTON, D.C. 20315 AMSAR-RD
ANSAR- RDG

CDR ROCK ISLAND, IL 61201
US ARMY T"FNK-AUTMV COMD
ATTN: AMDTA-UL CDR

AMSTA-RKM MAT LAB US ARMY ARMT COMD
WARREN, MICHIGAN 48090 FLD SVC DIV

ARMCOM ARMT SYS OFC
CDR ATTN: AMSAR-ASF
PICATINNY ARSENAL ROCK ISLAND, IL 61201
ATTN: SARPA-TS-S

SARPA-VP3 (PLASTICS CDR
TECH EVAL CEN) US ARMY ELCT COMD

DOVER, NJ 07801 FT MONMOUTH, NJ 07703

CDR CDR
FRANKFORD ARSENAL REDSTONE ARSENAL
ATTN: SARFA ATTN: AMSMI-RRS

PHILADELPHIA PA 19137 ASMI-RSM
ALABAMA 35809

DIRECTOR
US ARMY BALLISTIC RSCH LABS CDR
ATTN: AMXBR-LB ROCK ISLAND ARSENAL
ABERDEEN PROVING GROUND ATTN: SARRI-RDD
MARYLAND 21005 ROCK ISLAND, IL 61202

CDR CDR
US ARMY RSCH OFC (DURHAM) US ARMY FGN SCIENCE & TECH CEN
BOX CM, DUKE STATION ATTN: AMXST-SD
ATTN: RDRD-IPL 220 7TH STREET N.E.
DURHAM, NC 27706 CHARLOTTESVILLE, VA 22901

CDR DIRECTOR
WEST POINT MIL ACADEMY US ARMY PDN EQ. AGENCY
ATTN: CHMN, MECH ENGR DEPT ATTN: AMXPE-MT
WEST POINT, NY 10996 ROCK ISLAND, IL 61201

CDR
HQ, US ARMY AVN SCH
ATTN: OFC OF THE LIBRARIAN
FT RUCKER, ALABAMA 36362

. , .

iy:



EXTERNAL DISTRIBUTION LIST (Cont)

1 copy to each 2 copies to each

CDR CDR
US NAVAL WPNS LAB US ARMY MOB EQUIP RSCH & DEV COMD
CHIEF, MAT SCIENCE DIV AfN: TECH DOCU CEN

ATTN: MR. 1). MALYEVAC FT BELVOIR, VA 22060
DAHLGREN, VA 22448

CDR
1) 1 RECTOR US ARMY MAT RSCH AGCY
NAVAL RSCH LAB ATTN: AMXMR - TECH INFO CEN
ATTN: DIR. MECH DIV WATERTOWN, 'MASS 02172
WASHINGTON, D.C. 20375

CDR
DIRECTOR WRIG-T-PATTERSON AFB
NAVAL RSCH LAB - ATTN: AFML/MXA
CODE 26-27 (DOCU LIB.) OHIO 45433
WASHINGTON, D.C. 20375

CDR
NASA SCIENTIFIC & TECH INFO FAC REDSTONE ARSENAL
PO BOX 8757, A1TN: ACQ BR ATTN: DOCU & TECH INFO BR
BALTIMORE/WASHINGTON INTL AIRPORT ALABAMA 35809
MARYLAND 21240

DEFENSE METALS INFO CEN
BATTELLE INSTITUTE
505 KING AVE
COLUMBUS, OHIO 43201 12 copies

MANUEl. E. PRADO / G. STISSER CDR
LAWRENCE LIVERMORE LAB DEFENSE DOCU CEN
PO BOX 808 ATTN: DDC-TCA
LIVERMORE, CA 94550 CAMERON STATION

ALEXANDRIA, VA 22314
DR. ROBERT QUATTRONE ;

CH-iLF, MAT BR
US ARMY R&S GROUP, EUR
BOX 65, FPO N.Y. 09510

NOTE: PLEASE NOTIFY CDR, WATERVLIET ARSENAL, ATTN: SARWV-RT-TP,
WATERVLIET, N.Y. 12189, IF ANY CHANGE IS REQUIRED TO THE ABOVE.

JJ

'I


